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Abstract

In the context of the prediction of noise levels in vibroacoustic systems, numerical models or analytical
models can be developed. Generally, numerical models are adapted to the low and medium frequency
ranges and analytical models to the medium and high frequency ranges. For analytical models, a classical
approximation consists of modelling the multilayer system by an equivalent acoustic impedance. This paper
deals with a multilayer system consisting of a porous medium inserted between two thin plates. Part 1 of
this paper is devoted to the experiments performed and to the development of a probabilistic algebraic
model for the equivalent acoustic impedance. In the present Part 2, an analytical method is constructed for
this multilayer system. This method consists of introducing the unbounded medium in the plane directions
x1 and x2 while the medium is bounded in the x3-direction. A two-dimensional space Fourier transform
introducing the wave vector co-ordinates k1 and k2 is used. For a given frequency and for k1 and k2 fixed,
the boundary value problem in x3 consists of 12 differential equations in x3 whose coefficients depend on k1

and k2; with boundary conditions. This system of equations is solved by using adapted algebraic
calculations. By inverse Fourier transform with respect to k1 and k2; the equivalent acoustic impedance is
deduced. The method which is proposed is not usual. Finally, a comparison of this analytical approach is
compared with the experimental results.
r 2003 Elsevier Ltd. All rights reserved.

1. Introduction

Soundproofing schemes usually used for acoustic insulation consist of a single porous medium
layer or several inserted between plates. Much research has already been devoted to the vibro-
acoustics of simple structures such as beams, plates, circular cylindrical shells, coupled with
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internal or external acoustic fluids, by analytical methods (for instance see Refs. [1–8]) and to
the vibro-acoustics of general structures by numerical methods (see for instance [5,9]). Concerning
the vibro-acoustics of multilayer systems without porous medium, a large number of works
were published (for instance see Refs. [2,5,10–16]). The difficulties of modelling multilayer
systems are due to the problems induced by the acoustic behaviour of porous media and by the
coupling between the layers constituting the system. The porous medium is a complex material
consisting of two phases: one fluid and one solid. The dissipation inside a porous medium
is induced by viscous effects (friction of the fluid phase to the solid phase on the pore walls),
by thermal effects (absorption of the remaining heat from the fluid phase by the solid phase) and
by structural damping related to the viscoelasticity of the solid phase. A porous medium can
be modelled by an equivalent fluid model [17–19] if the assumption of a motionless solid phase
can be justified. If the fluid phase is strongly coupled with the solid phase or, if the porous
medium is coupled with a vibrating structure, one needs to take into account the motion of
the solid phase [1,20–29]. The coupling between the different layers of a multilayer system is
obtained by the construction of the interface conditions between the layers (see for instance
Refs. [24,30–32]).

Acoustic transmission through porous media or multilayer systems including porous media
have recently been studied using the finite element method. In this context, the entire system
includes porous media which are discretized by finite elements [33–41]. These methods are very
efficient in the low-frequency range, have to be adapted to be efficient in the medium frequency
range and cannot be used at high frequencies in the present state of the art. For simple structures,
analytical methods can be used for the medium and high frequency ranges (see for instance
Refs. [24,42–48]).

In this paper, for the medium and high frequency ranges, one presents the modelling of a
multilayer system with porous medium by an analytical approach in order to construct an
equivalent acoustic impedance of this multilayer system. Such an acoustic impedance model can
be used for the prediction of vibro-acoustic responses of complex systems, allowing such a
soundproofing scheme to be modelled. The multilayer system under consideration consists of a
three-dimensional porous medium made of an open polyurethane foam inserted between two thin
plates. This system is described in Part 1 [49] of the paper.

Concerning the three-dimensional porous medium, a three-dimensional formulation is used and
is based on the Biot theory which introduces the displacement fields associated with the solid and
the fluid phases. The motion of the solid phase cannot be neglected because the porous medium is
inserted between two vibrating plates. Equations are written in the general case of a homogeneous
anisotropic porous medium whose solid phase is viscoelastic. In order to solve the equations, the
two in-plane components of the fluid phase displacement are eliminated and the third
one component relative to the thickness direction is preserved. The boundary value problem of
the multilayer system is constructed by using the local equations of plates, for bending and
membrane deformations, coupled with the three-dimensional porous medium. Since the
multilayer system corresponds to one three-dimensional medium coupled with two two-
dimensional media, the interface conditions between the layers have to be constructed. Such a
method was presented in Ref. [50] for the case of a plate in bending mode coupled with a three-
dimensional elastic media. In this paper, an extension to the case of the above multilayer system is
presented [51].
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For the multilayer system under consideration, the construction of the acoustic impedance
operator and its local approximation (introduced in Part 1 [49]) is carried out using an analytical
method for which the finite reference-plane of the mechanical system is replaced by an infinite
reference-plane. This kind of approximation is a priori usable for the medium and high frequency
ranges. This analytical method uses the spatial co-ordinate corresponding to the thickness
direction and uses a two-dimensional spatial Fourier transform for the two directions
corresponding to the reference plane which is infinite. For a given frequency and for each wave
vector associated with the reference-plane directions, a system of differential equations with
respect to the thickness direction with appropriate boundary conditions has to be solved. This
system consists of twelve coupled equations: three for each plate (two for the membrane
deformation and one for the bending deformation), six for the porous medium (three for the solid
phase and three for the fluid phase). This system of equations is partially degenerate.
Consequently, the elimination of the two in-plane phase fluid displacements can be performed
and, then coupled equations deduced ten. This system of equations has bad numerical
conditioning induced by the presence of terms which exponentionally increase in the thickness
direction of the porous medium. An adapted method has specifically been developed in order to
solve such a system of differential equations.

Concerning the validation of this analytical method by using the experimental results
introduced in Part 1 [49], the mechanical properties corresponding to the experiment are used.
Consequently, one has to consider a homogeneous isotropic porous medium with a viscoelastic
solid phase and two homogeneous viscoelastic isotropic plates. The analytical method is then
developed in this context. The parameters of the porous medium introduced in the Biot theory,
applied in the context of acoustic problems [22–24], were measured [52,53]. The complete set of
the anisotropic porous medium parameters has not been measured. Consequently, the measured
parameters only allow the isotropic and transverse isotropic case to be described. The main
objective of this paper is the experimental validation of the analytical model for a porous medium
modelled by a homogeneous isotropic porous medium with a viscoelastic solid phase. The
transverse isotropic viscoelastic solid phase is studied in [51]. Nevertheless, a comparison between
the isotropic and transverse isotropic cases is presented for the local acoustic impedance.

In Section 2, the boundary value problem is given considering the general case of a
homogeneous anisotropic viscoelastic porous medium coupled with two homogeneous
orthotropic viscoelastic plates in membrane and bending deformations. In Section 3, using the
two-dimensional inplane space Fourier transform, the boundary value problem is deduced.
Section 4 deals with the construction of the equivalent acoustic impedance. The experimental
validation is presented in Section 5.

2. Expression of the boundary value problem

The Love-Kirchhoff model is used for the bending motions of the two plates called P1 and P2

and the membrane motions are considered. Let O be the three-dimensional bounded region
occupied by the porous material. The interfaces between the porous medium and the plates P1 and
P2 are denoted by S1 and S2 (see Fig. 1). A pressure field p is applied to S0: Let S1 and S2 be the
mid-planes of the plates P1 and P2: The co-ordinates ðx1;x2; x3Þ of a point belonging to the porous
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medium are given in the Cartesian system whose origin belongs to the reference-plane S of the
multilayer system which is chosen as the coupling interface S1: Consequently, surface S coincides
with surface S1: The x3 co-ordinate of the coupling interface S1 (or S2) is 0 (or H) (in which H is
the thickness of the porous medium). In this paper, if T is any quantity depending on the co-
ordinates x1; x2 and x3; T;k denotes the partial derivative @T=@xk and T0 ¼ @T=@x3; T

00 ¼
@2T=@x2

3: The Kronecker symbol denoted by dab is such that dab ¼ 1 for a ¼ b; dab ¼ 0 for aab:

2.1. Membrane and bending vibrations equations for plates P1 and P2

Using thin plate classical hypotheses for plate Pc; c ¼ 1; 2 and since the Love-Kirchhoff model
is used for the bending motions of the two plates and the membrane motions are added, the
displacement field of plate Pc; c ¼ 1; 2; is defined by ðvPc

1 ðx1;x2Þ; v
Pc
2 ðx1;x2Þ;wPcðx1;x2ÞÞ where

vPc
1 ðx1; x2Þ and vPc

2 ðx1; x2Þ are the inplane displacements (membrane displacements) of plate Pc and
wPcðx1;x2Þ is its transverse displacement. Plate P1 is submitted to a pressure field p: The boundary
value problem is written as follows. The dynamical equations of plate P1 for bending and
membrane motions are expressed as

�o2rP1
hP1

vP1
a � NP1

ab;b ¼ s1s
a3 on S1; ð1Þ

�o2rP1
hP1

wP1 � MP1

ab;ab ¼ s1s
33 þ s1f

33 þ hP1
s1s
a3;a=2þ p on S1; ð2Þ

in which the solid part stress tensor components ss
ij and the fluid part stress tensor components s f

ij

are defined by

s1s
ij ðx1; x2Þ ¼ ss

ijðx1;x2; 0Þ; s1f
ij ðx1;x2Þ ¼ s f

ij ðx1;x2; 0Þ: ð3Þ

The dynamical equations of plate P2 for bending and membrane motions are given by

�o2rP2
hP2

vP2
a � NP2

ab;b ¼ �s2s
a3 on S2; ð4Þ

�o2rP2
hP2

wP2 � MP2

ab;ab ¼ �s2s
33 � s2f

33 þ hP2
s2s
a3;a=2 on S2; ð5Þ

in which

s2s
ij ðx1; x2Þ ¼ ss

ijðx1; x2;HÞ; s2f
ij ðx1;x2Þ ¼ s f

ij ðx1;x2;HÞ; ð6Þ

The right-hand side of Eqs. (1), (2), (4) and (5) correspond to the coupling effects of the three-
dimensional porous medium on the plates. For orthotropic plate Pc with c ¼ 1; 2; the components
of the bending moment tensor MPc

ab and the components of the inplane force tensor NPc
ab are
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written as

MPc
ab ¼ �ð1þ ioaPc

1 ðoÞÞD f
Pc
½nPcwPc

;ggdab þ ð1� nPcÞwPc
;ab�; ð7Þ

NPc
ab ¼ ð1þ ioaPc

1 ðoÞÞDm
Pc

nPcvPc
g;gdab þ

1
2
ð1� nPcÞðvPc

a;b þ vPc
b;aÞ

h i
; ð8Þ

in which D
f

Pc
¼ EPch3

Pc
=½12ð1 � nPc2Þ�; Dm

Pc
¼ EPchPc=½1� nPc2�:

2.2. Three-dimensional vibrations of the porous medium

Let us ¼ ðus
1; u

s
2; u

s
3Þ and u f ¼ ðu f

1 ; u
f
2 ; u

f
3 Þ be the displacement field of the solid phase and the

fluid phase, respectively, for the porous medium. The dynamical equations of the porous medium
for the solid part and the fluid part are the Biot equations [22–24] and are written as

�o2 *r11us
i � o2 *r12u

f
i � ioF2½k�1�ijðu

f
j � us

j Þ � *ss
ij;j ¼ 0 in O; ð9Þ

�o2 *r22u
f

i � o2 *r12us
i þ ioF2½k�1�ijðu

f
j � us

j Þ � *s f
ij;j ¼ 0 in O; ð10Þ

in which k is the permeability tensor relative to viscous effects and F is the porosity. The
coefficients *r11; *r22 and *r12 are the density of the solid phase, the density of the fluid phase and the
coupling density between the solid and the fluid phases, respectively. For k and l equal to 1 or 2,
*rkl is defined by [35]

*rklðoÞ ¼ rkl þ DrklðoÞ; ð11Þ

in which an expression of DrklðoÞ is given in Section 3 and where

r11 ¼ r1 þ Frf ða� 1Þ; r22 ¼ Frf a; r12 ¼ �Frf ða� 1Þ; ð12Þ

with r1 ¼ ð1 � FÞrs and where a is the tortuosity, rf the fluid mass density and rs the solid
material mass density.

The boundary conditions between the porous medium and plate Pc are given by writing the
continuity of the normal displacement for the fluid phase and the continuity of the displacement
field for the solid phase, that is to say

us
a ¼ vP1

a �
hP1

2
wP1
;a ; us

3 ¼ wP1 ; u
f
3 ¼ wP1 on S1;

us
a ¼ vP2

a þ
hP2

2
wP2
;a ; us

3 ¼ wP2 ; u
f
3 ¼ wP2 on S2: ð13Þ

Since the porous medium is assumed to be viscoelastic and anisotropic, the constitutive equations
are given by

ss
ijðx;oÞ ¼ ðLs

ijkhðoÞ þ ioDijkhðoÞÞes
kh þ L

sf
ijkhðoÞe

f
kh; ð14Þ

s f
ij ðx;oÞ ¼ L

f
ijkhðoÞe

f
kh þ L

fs
ijkhðoÞe

s
kh; ð15Þ

Ls
ijkhðoÞ ¼ AijkhðoÞ þ MðoÞ½BijBkh � FðBijdkh þ dijBkhÞ þ F2dijdkh�;

L
f

ijkhðoÞ ¼ MðoÞF2dijdkh; L
sf
ijkhðoÞ ¼ L

fs
ijkhðoÞ ¼ MðoÞFðBijdkh � FdijdkhÞ; ð16Þ
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in which es
kh and e f

kh are the strain tensors relative to the solid phase and the fluid phase,
respectively. The components AijkhðoÞ and DijkhðoÞ are relative to the elastic stress tensor and to
the damping stress tensor, respectively. The two tensors have the usual symmetric properties and
are positive definite [9]. If one considers a hysteretic damping, the components DijkhðoÞ can be
written as DijkhðoÞ ¼ a1ðoÞAijkhðoÞ in which a1ðoÞ is a real positive constant which depends on o:
The Bij components are relative to the coupling of the solid phase with the fluid phase. The
thermal effects are expressed by MðoÞ which is defined by MðoÞ ¼ KeðoÞ=F in which KeðoÞ is the
frequency dependent equivalent complex bulk modulus of air [24] and is given by

KeðoÞ ¼
Ka

g�
g� 1

1 þ 8Zf =ðiL
02Prorf ÞG0ðoÞ

; ð17Þ

where Ka is the bulk modulus of the fluid (in case of air, Ka ¼ gpf ; where pf is the pressure), Zf ; the
fluid viscosity, Pr; the Prandtl number, L0; the thermal characteristic length [24,39] which has to be
identified experimentally, G0ðoÞ; the complex factor defined by [24]

G0ðoÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ io=oTt

p
; ð18Þ

with oTt ¼ 16Zf =ðPrL
02rf Þ > 0 is real.

3. Boundary value problem in the Fourier space

As explained in Section 1, and in order to compare this analytical prediction with the
experiments, the porous medium is considered as a homogeneous viscoelastic isotropic medium
and the plates are considered as homogeneous viscoelastic isotropic media. This model can easily
be extended to the case of an anisotropic porous medium whose equations are given in Section 2.
The method proposed for the construction of the equivalent acoustic impedance is based on
the spectral method relative to the infinite plane ðx1Ox2Þ containing the reference-plane S of
the multilayer system. Since the thickness H is finite, the co-ordinate x3; corresponding to the
thickness direction, is preserved (see Fig. 2). In order to simplify the notation, a function and its
Fourier transform are denoted by the same symbol and differ by their arguments. Let *x ¼ ðx1; x2Þ
be the point in reference-plane S of the multilayer system, k ¼ ðk1; k2Þ; d *x ¼ dx1 dx2 and dk ¼
dk1 dk2: The Fourier transform gðk;oÞ of a function *x/gð *x;oÞ with respect to *x is such that

gðk;oÞ ¼
Z
R2

eik	 *xgð *x;oÞ d *x; gð *x;oÞ ¼
1

ð2pÞ2

Z
R2

e�ik	 *xgð *k;oÞ dk; ð19Þ
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with k 	 *x ¼ k1x1 þ k2x2: The derivative @w=@x3 is denoted by w0: The Fourier transforms with
respect to ðx1;x2Þ of the dynamical equations for the solid and the fluid phases of the porous
medium are

� o2 *r11us
i � o2 *r12u

f
i � iobðu f

i � us
i Þ þ ik1ss

i1 þ ik2ss
i2 � ss

i3;3 ¼ 0;

� o2 *r22u
f

i � o2 *r12us
i þ iobðu f

i � us
i Þ � s f

i3;3 ¼ 0; ð20Þ

in which bðoÞ ¼ F2=KðoÞ where KðoÞ is the permeability for the isotropic case. The coefficient
bðoÞ is relative to the viscous effects and is written as [22–24,35]

bðoÞ ¼ F2sGRðoÞ; ð21Þ

in which GRðoÞ > 0 with GRð�oÞ ¼ GRðoÞ is the real part of GðoÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ iP #o=2

p
which is the

viscous corrective factor, and where P ¼ 8ak0=ðFL2Þ with k0 ¼ Zf =s; the viscous static
permeability, and where s > 0 is the resistivity which has to be identified experimentally. The
non-dimensional factor #o is defined by #o ¼ oarf k0=ðFZf Þ and the viscous characteristic length L
has to be identified experimentally. The added mass DrklðoÞ; introduced in Eq. (11), due to
viscous effects, is defined by Panneton [35]

DrklðoÞ ¼ ð�1ÞkþlF2sGI ðoÞ=o; ð22Þ

where GI ðoÞ is the imaginary part of GðoÞ and which has to verify these following algebraic
properties [51]

GI ðoÞ > 0 for o > 0; GI ð�oÞ ¼ �GI ðoÞ; lim
o-0

jGI ðoÞ=oj ¼ CoN; ð23Þ

in which C is a finite constant. An expression of GI ðoÞ is given by [24]

GI ðoÞ ¼
1ffiffiffi
2

p o=oTvffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 þ ðo=otvÞ

2
qr ; ð24Þ

in which oTv ¼ s2L2F2=ð4a2Zsrf Þ where the structural dissipation factor Zs has to be identified
experimentally. For the solid phase of the porous medium, the Fourier transforms with respect to
ðx1; x2Þ of the constitutive equations are

ss
11ðk;x3;oÞ ¼AF ðoÞð�ik1us

1 � ik2us
2 þ us

3;3Þ þ BF ðoÞð�ik1Þus
1

þ CF ðoÞð�ik1u
f
1 � ik2u

f
2 þ u

f
3;3Þ;

ss
22ðk;x3;oÞ ¼AF ðoÞð�ik1us

1 � ik2us
2 þ us

3;3Þ þ BF ðoÞð�ik2Þus
2

þ CF ðoÞð�ik1u
f
1 � ik2u

f
2 þ u

f
3;3Þ;

ss
33ðk;x3;oÞ ¼ AF ðoÞð�ik1us

1 � ik2us
2 þ us

3;3Þ þ BF ðoÞus
3;3

þ CF ðoÞð�ik1u
f
1 � ik2u

f
2 þ u

f
3;3Þ;

ss
12ðk;x3;oÞ ¼ �iBF ðoÞðk2us

1 þ k1us
2Þ=2;

ss
13ðk;x3;oÞ ¼ BF ðoÞðus

1;3 � ik1us
3Þ=2;

ss
23ðk;x3;oÞ ¼ BF ðoÞðus

2;3 � ik2us
3Þ=2; ð25Þ
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in which AF ðoÞ; BF ðoÞ and CF ðoÞ are defined by AF ðoÞ ¼ ð1þ ioa1ðoÞÞnE=½ð1þ nÞð1 � 2nÞ� þ
MðoÞðB � FÞ2; BF ðoÞ ¼ ð1þ ioa1ðoÞÞE=ð1 þ nÞ; CF ðoÞ ¼ FMðoÞðB � FÞ with E; the Young
modulus and n the Poisson coefficient of the solid phase. In acoustic problems, the coupling factor
B is such that B ¼ 1 [22,24]. For the fluid phase, the Fourier transforms with respect to ðx1; x2Þ of
the constitutive equations are

s f
ii ðk; x3;oÞ ¼ EF ðoÞð�ik1u

f
1 � ik2u

f
2 þ u

f
3;3Þ þ CF ðoÞð�ik1us

1 � ik2us
2 þ us

3;3Þ; ð26Þ

for i=1, 2, 3, and where EF ðoÞ ¼ F2MðoÞ: The plate P1 is subjected to a point force applied to
the origine of plate P1 in the direction x3 with the intensity f ðoÞ: Therefore, the pressure field p
introduced in Eq. (2) is such that pð *x;oÞ ¼ f ðoÞd0ð *xÞ in which d0ð *xÞ is the Dirac function at point
0. For plates P1 and P2; the Fourier transforms with respect to ðx1;x2Þ of the dynamical equations
are

� o2rP1
hP1

uP1 þ ð1þ ioaP1

1 ðoÞÞK1ðkÞuP1 ¼ F1ðk;oÞ þ fðoÞ;

� o2rP2
hP2

uP2 þ ð1þ ioaP2

1 ðoÞÞK2ðkÞuP2 ¼ F2ðk;oÞ; ð27Þ

in which uP1ðk;oÞ ¼ ðvP1

1 ðk;oÞ; vP1

2 ðk;oÞ;wP1ðk;oÞÞ and uP2ðk;oÞ ¼ ðvP2

1 ðk;oÞ; vP2

2 ðk;oÞ; wP2ðk;oÞÞ;
fðoÞ is such that fðoÞ ¼ ð0; 0; f ðoÞÞ; for c ¼ 1 or 2, KcðkÞ is the stiffness matrix for plate Pc and is
such that

KcðkÞ ¼

ac11ðkÞ ac12ðkÞ 0

ac12ðkÞ ac22ðkÞ 0

0 0 ac33ðkÞ

2
64

3
75; ð28Þ

in which

ac11ðkÞ ¼ Dm
Pc
½ð1þ nPcÞk2

1 þ ð1� nPcÞðk2
1 þ k2

2Þ�=2; ac
12ðkÞ ¼ Dm

Pc
ð1 þ nPcÞk1k2=2;

ac22ðkÞ ¼ Dm
Pc
½ð1þ nPcÞk2

2 þ ð1� nPcÞðk2
1 þ k2

2Þ�=2; ac
33ðkÞ ¼ D

f
Pc
ðk2

1 þ k2
2Þ

2: ð29Þ

The vectors F1ðk;oÞ and F2ðk;oÞ correspond to the forces induced by the porous medium on the
plates P1 and P2 and are given by

F1ðk;oÞ ¼

s1s
13

s1s
23

s1s
33 þ *s1f

33 � ihP1
ðk1s1s

13 þ k2s1s
23Þ=2

2
64

3
75;

F2ðk;oÞ ¼

�s2s
13

�s2s
23

�s2s
33 � s2f

33 � ihP2
ðk1s2s

13 þ k2s2s
23Þ=2

2
64

3
75: ð30Þ

Finally, the boundary value problem in x3 is completely defined in adding the Fourier transform
with respect to ðx1; x2Þ of the boundary conditions defined by Eq. (13), i.e.

us
a ¼ vP1

a þ ihP1
kaw

P1=2; us
3 ¼ wP1 ; u

f
3 ¼ wP1 ; on S1; a ¼ 1; 2;

us
a ¼ vP2

a � ihP2
kaw

P2=2; us
3 ¼ wP2 ; u

f
3 ¼ wP2 ; on S2: ð31Þ
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4. Solving the boundary value problem and calculation of the equivalent acoustic impedance

For o; k1 and k2 fixed, the boundary value problem in x3; constructed in Section 3, consists of
12 coupled differential equations in x3 whose coefficients depend on o; k1 and k2; and on
boundary conditions. The acoustic impedance equivalent to the multilayer system being assumed
homogeneous in plane *x ¼ ðx1;x2Þ; the pressure field p applied to plate P1 is related to the normal
velocity jump Dvð *x0;oÞ ¼ vP1ð *x0;oÞ � vP2ð *x0;oÞ; with vP1ð *x0;oÞ ¼ iowP1ð *x0;oÞ and vP2ð *x0;oÞ ¼
iowP2ð *x0;oÞ; and is given by the following equation (see Part 1 of the paper):

pð *x;oÞ ¼
Z
*x0AS

zð *x� *x0;oÞDvð *x0;oÞ dS *x0 ; *xAS; ð32Þ

where dS *x0 ¼ dx0
1 dx0

2: The Fourier transform with respect to *x of Eq. (32) is written as

pðk;oÞ ¼ iozðk;oÞDwðk;oÞ; ð33Þ

in which Dwðk;oÞ ¼ wP1ðk;oÞ � wP2ðk;oÞ is the Fourier transform of Dwð *x;oÞ ¼ wP1ð *x;oÞ �
wP2ð *x;oÞ: An equation allowing the calculation of pðk;oÞ as a function of Dwðk;oÞ has to be
constructed. Consequently, the unknowns u f and us have to be eliminated from the system of
equations. Substituting Eqs. (25) and (26) into Eq. (20) yields

A11 0

0 0

" #
X00ðx3Þ

Y00ðx3Þ

" #
þ

B11ðkÞ B12ðkÞ

BT
12ðkÞ 0

" #
X0ðx3Þ

Y0ðx3Þ

" #
þ

C11ðkÞ C12ðkÞ

CT
12ðkÞ C22ðkÞ

" #
Xðx3Þ

Yðx3Þ

" #
¼ 0; ð34Þ

for x3 in ½0;H�; in which vectors Xðx3Þ and Yðx3Þ are such that Xðx3Þ ¼ ðus
1ðx3Þ; us

2ðx3Þ; us
3ðx3Þ;

u
f
3 ðx3ÞÞ and Yðx3Þ ¼ ðu f

1 ðx3Þ; u
f
2 ðx3ÞÞ: It should be noted that all quantities in Eq. (34) depend on

o: In order to simplify the notation, the dependence on k of X and Y is omitted. The matrices A11;
B11ðkÞ; B12ðkÞ; C11ðkÞ; C12ðkÞ and C22ðkÞ are defined in Appendix A and AT is the transpose of
matrix A: Since C22ðkÞ is invertible for oa0; Y can be eliminated from Eq. (34) by using the
second line of this equation and yields

AðkÞX00ðx3Þ þ BðkÞX0ðx3Þ þ CðkÞXðx3Þ ¼ 0; ð35Þ

in which AðkÞ; BðkÞ and CðkÞ are defined by

AðkÞ ¼ A11 � B12ðkÞC
�1
22 ðkÞB

T
12ðkÞ;

BðkÞ ¼ B11ðkÞ � B12ðkÞC
�1
22 ðkÞC

T
12ðkÞ � C12ðkÞC

�1
22 ðkÞB

T
12ðkÞ;

CðkÞ ¼ C11ðkÞ � C12ðkÞC
�1
22 ðkÞC

T
12ðkÞ: ð36Þ

One introduces Wðx3Þ ¼ ðX0ðx3Þ;Xðx3ÞÞ: As above, the dependence in k and o of W is omitted.
The second-order differential equation (35) is transformed into the following first order
differential equation

�AðkÞW0ðx3Þ þ BðkÞWðx3Þ ¼ 0; ð37Þ

in which complex symmetric matrices AðkÞ and BðkÞ are such that

AðkÞ ¼
�AðkÞ 0

0 CðkÞ

" #
and BðkÞ ¼

BðkÞ CðkÞ

CðkÞ 0

" #
: ð38Þ
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In order to solve Eq. (37) and since it can be proved that the complex matrix AðkÞ�1BðkÞ is
diagonalizable for any k in R2; the eigenvalue problem AðkÞ�1BðkÞFðkÞ ¼ FðkÞLðkÞ associated
with this equation is introduced, in which LðkÞ is the diagonal matrix constituted of the eight
complex eigenvalues l1;y; l8: The complex square matrix FðkÞ is constituted of the associated
eigenvectors. Therefore, the general solution of Eq. (37) is written as

Wðx3Þ ¼ Gðk; x3ÞWð0Þ; Gðk;x3Þ ¼ FðkÞDðk;x3ÞUðkÞ�1;

½Dðk;x3Þ�jk ¼ djke
x3ljðkÞ; ð39Þ

Taking x3 ¼ H in Eq. (39), the vector ðX0ðHÞ;X0ð0ÞÞ can be expressed as a function of the vector
ðXðHÞ;Xð0ÞÞ which is written as

X0ðHÞ

X0ð0Þ

" #
¼ MHðk;oÞ

XðHÞ

Xð0Þ

" #
; ð40Þ

in which the construction of the complex matrix MHðk;oÞ is given in Appendix B. It should be
noted that the construction of the matrix MHðk;oÞ cannot be obtained by a direct algebraic
calculation. This matrix has to be constructed using a numerical calculation on an ill-conditioned
numerical problem. Consequently, an adapted algebraic calculation has to be developed in order
to avoid the bad numerical conditioning. This ill-conditioning is due to the four complex
eigenvalues having positive real parts while the four other complex eigenvalues with negative real
parts do not induce numerical problems. These numerical difficulties are induced by the fact that,
for x3 in ½0;H�; four diagonal terms of the matrix Dðk; x3Þ are exponentionally increasing. In
Appendix B, a well-conditioned formulation is constructed and consists of treating separately the
two groups of eigenvalues. Using the second line of Eq. (34) with X0ð0Þ and X0ðHÞ; and
substituting Eq. (40) in the resulting equations yields

YðHÞ

Yð0Þ

" #
¼ ðCBðk;oÞMHðk;oÞ þ CCðk;oÞÞ

XðHÞ

Xð0Þ

" #
; ð41Þ

in which CBðk;oÞ and CCðk;oÞ are given by

CBðk;oÞ ¼
�C22ðk;oÞ

�1B12ðk;oÞ
T 0

0 �C22ðk;oÞ
�1B12ðk;oÞ

T

" #
;

CCðk;oÞ ¼
�C22ðk;oÞ

�1C12ðk;oÞ
T 0

0 �C22ðk;oÞ
�1C12ðk;oÞ

T

" #
: ð42Þ

The boundary conditions defined by Eq. (31) can be rewritten as

Xð0Þ ¼ L1ðkÞuP1 and XðHÞ ¼ L2ðkÞuP2 ; ð43Þ
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in which matrices L1ðkÞ and L2ðkÞ are defined by

L1ðkÞ ¼

1 0 ihP1
k1=2

0 1 ihP1
k2=2

0 0 1

0 0 1

2
6664

3
7775; L2ðkÞ ¼

1 0 �ihP2
k1=2

0 1 �ihP2
k2=2

0 0 1

0 0 1

2
6664

3
7775: ð44Þ

Consequently, the vector ðF2ðk;oÞ;F1ðk;oÞÞ; in which F2ðk;oÞ and F1ðk;oÞ are defined by
Eq. (30), can be rewritten as

F2ðk;oÞ

F1ðk;oÞ

" #
¼ Nðk;oÞ

uP2ðk;oÞ

uP1ðk;oÞ

" #
; ð45Þ

where the matrix Nðk;oÞ is a ð6 � 6Þ complex matrix which can easily be calculated [51].
Substituting Eq. (45) into Eq. (27) allows the vector ðuP2ðk;oÞ; uP1ðk;oÞÞ to be calculated as a
function of fðoÞ by solving the linear matrix equation

Pðk;oÞ
uP2ðk;oÞ

uP1ðk;oÞ

" #
¼

0

fðoÞ

" #
; ð46Þ

in which Pðk;oÞ can easily be constructed. Knowing uP1ðk;oÞ and uP2ðk;oÞ; one can deduce
wP1ðk;oÞ and wP2ðk;oÞ and consequently, Dwðk;oÞ which is equal to wP1ðk;oÞ � wP2ðk;oÞ can be
calculated by

Dwðk;oÞ ¼ hðk;oÞ f ðoÞ; ð47Þ

in which hðk;oÞ ¼ ½P�1ðk;oÞ�66 � ½P�1ðk;oÞ�36: Taking the inverse Fourier transform in k of
Eq. (47) yields

Dwð *x;oÞ ¼ hð *x;oÞ f ðoÞ with hð *x;oÞ ¼
1

ð2pÞ2

Z
R2

e�ik	 *xhðk;oÞ dk: ð48Þ

The equivalent acoustic impedance of the multilayer system being assumed isotropic in reference
plane S; then zð *x� *x0;oÞ depends on jj *x� *x0jj and consequently, the Fourier transform zðk;oÞ
depends on jjkjj: One then deduces that hðk;oÞ depends only on k ¼ jjkjj and is rewritten as hðk;oÞ:
Consequently, since the driving force is a point force applied to the origin, Dwð *x;oÞ depends only
on r ¼ jj *xjj and is rewritten as Dwðr;oÞ: Thus o/Dwðr;oÞ appears as the cross-frequency
response function relative to two points distinct of r: Using the classical formula of the Fourier
transform in polar co-ordinates yields

Dwðr;oÞ ¼
1

2p

Z þN

0

kJ0ðkrÞhðk;oÞ dk; ð49Þ

in which J0ðkrÞ is the zero order Bessel function. Eq. (49) gives a continuous expression of Dwðr;oÞ
as a function of the distance r between the origin in the reference-plane S and the point *x in the
reference-plane S: In order to compare the present model with the experiments (see Part 1 of the
paper [49]), the ð25� 25Þ impedance matrix corresponding to the 25 driving and receiving points

ARTICLE IN PRESS

B. Faverjon, C. Soize / Journal of Sound and Vibration 276 (2004) 593–613 603



has to be constructed. Let ½DW ðoÞ� be the ð25� 25Þ symmetric complex matrix defined by

½DW ðoÞ�jk ¼ Dwðrjk;oÞ; ð50Þ

in which rjk ¼ jj *xj � *xkjj where *x1;y; *x25 are the 25 driving points with a unite force and the
receiving points defined in Fig. 2 of Part 1 of the paper. Consequently ½DWðoÞ� can be viewed as
the matrix-valued frequency response function relative to these points. Let ½ZðoÞ� be the
corresponding ð25� 25Þ symmetric complex impedance matrix which is thus defined by

½ZðoÞ� ¼
1

io
½DW ðoÞ��1: ð51Þ

For each o fixed, complex matrix ½ZðoÞ� is numerically calculated by using the analytical
calculation presented above and in Appendices A and B. For o belonging to the frequency band
of analysis, impedance matrix ½ZðoÞ� has to be compared to experimental impedance matrix
½ZexpðoÞ� constructed in Part 1 of the paper [49].

5. Experimental comparisons and validation

In this section, the analytical model is compared to the experiment presented in Part 1 of the
paper. The geometry and the material properties of the multilayer system are given in Appendix A
of Part 1 of the paper [49].

5.1. Experimental comparisons and validation for the equivalent acoustic impedance

The right-hand side of Eq. (49) is numerically calculated with a space step Dr ¼ 6:28� 10�3 m
for r in ½0; 6:3� m.

5.1.1. Local acoustic impedance

The analytical model of the local equivalent acoustic impedance corresponds to the diagonal
terms of the impedance matrix defined by Eq. (51). Figs. 3–5 display the graphs of the real part
and the imaginary part of the local equivalent acoustic impedance at the points 8, 15 and 16,
defined in Fig. 2 of Part 1 [49]. The solid lines are relative to the analytical model and the dashed
lines to the experiments. There is a good agreement between the analytical model and the
experimental results for these three points but also for all the other 22 points (see Ref. [51]), which
are not presented in this paper. Since the results for all the 25 points cannot be given in the present
paper, and taking into account that the graphs of all the real parts are similar and that the graphs
of all the imaginary parts are similar, a part of the results can be synthesized in giving the real part
and the imaginary part of the average local acoustic impedance defined as 1

25

P25
j¼1 ½ZðoÞ�jj :

Concerning this average local impedance, Figs. 6(a) and (b) compare the analytical results with
the experiments for the real part and for the imaginary part. On each figure, there is a good
agreement between analytical result and experiment. In Figs. 3 to 6, it can be seen that the real
parts (see Figs. 3(a), 4(a), 5(a) and 6(a)) and the imaginary parts (see Figs. 3(b), 4(b), 5(b) and
6(b)) of the impedance look similar to the schematic graph given in Fig. 6 of Part 1, that is to say,
for all oX0; the real part is positive with a peak at 844 Hz; and the imaginary part has a vertical
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Fig. 4. (a) Real and (b) imaginary parts of the local equivalent acoustic impedance at the point 15. Key as for Fig. 3.

0 400 800 1200 1600
-100

-50

0

50

100

150

[Z
R
(ω

)]
16

 1
6

[Z
I(ω

)]
16

 1
6

(a) 

0 400 800 1200 1600

-300

-200

-100

0

100

(b) Frequency, (Hz) Frequency, (Hz)

Fig. 5. (a) Real and (b) imaginary parts of the local equivalent acoustic impedance at the point 16. Key as for Fig. 3.
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Fig. 3. (a) Real and (b) imaginary parts of the local equivalent acoustic impedance at the point 8. Analytical model

(solid line), experimental results (dashed line).
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asymptote when o goes to 0 and there is a zero crossing for a frequency equal to 400 Hz
associated with the peak of the real part. The peak and the associated zero crossing seem to be due
to a resonance phenomenum between the dilatational wave which preferentially propagates in the
fluid phase of the porous medium and the bending waves in the two plates. In addition, Figs. 6(a)
and (b) compare the analytical results for an isotropic porous medium (solid line) with the
analytical results for a porous medium having a transverse isotropic solid phase (dash-dot line)
whose parameters have been partially measured [53]. One can observe that these two analytical
models are very similar. Consequently, in this paper, one only presents results for the case of an
isotropic porous medium. For the case of a transverse isotropic solid phase of the porous medium,
theory details and results can be found in Ref. [51]. The robustness of the analytical method has
been proved by performing a sensitivity analysis with respect to the parameters of the solid phase
(mass density, Young modulus, dissipation factor and Poisson coefficient) and of the coupling
between the two phases (porosity, tortuosity, resistivity, viscous and thermal characteristic
lengths). From this sensitivity analysis, it can be concluded that the analytical model weakly
depends on these parameters. For instance, Figs. 7 and 8 show the results for the Poisson ratio n
varying in [0.25, 0.46] and for the resistivity s varying in ½2000; 20000� N s m�4: Figs. 7a and 8a
display the real part of the impedance, Figs. 7b and 8b display its imaginary part.

It should be noted that, although the averaged impedance does not seem affected by the
resistivity, other numerical simulations have been performed in Ref. [51]. For instance, the porous
medium has been modelled by the fluid equivalent theory. Such a model does not give good results
with respect to the experiments. In order to study the type of model for the porous medium, the
parametric analysis performed in Ref. [51] shows that the complete 3D model of the porous
medium presented in this paper is necessary to predict the experimental results with a good
accuracy.

5.1.2. Off-diagonal terms of the acoustic impedance
The equivalent acoustic impedance tends to become local for frequencies greater than 300 Hz:

Figs. 9(a) and (b) display the equivalent acoustic impedance as a function of distance r between
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the driving and the receiving points. For a frequency equal to 1400 Hz; the analytical results
(circle symbols) and the experimental results (cross symbols) are very close. This conclusion holds
for the other frequencies (see Ref. [51]). The aspect of the real part (Fig. 9(a)) and of the imaginary
part (Fig. 9(b)) of the equivalent acoustic impedance as a function of the distance r has been
explained in Part 1 [49] (exponential decreasing, sinusoidal function, non-zero phase for o ¼ 0 for
the imaginary part). For the other frequencies belonging to ½300; 1600� Hz; the results are very
similar. There is a good agreement between the analytical results and the experiments.
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Fig. 7. (a) Real and (b) imaginary parts of the average local equivalent acoustic impedance over all the points for the
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5.2. Experimental comparisons and validation for the cross-frequency response function

The analytical model of the cross response function between two points distinct of r is the
mapping o/Dwðr;oÞ: In this subsection, one compares the experiments with the analytical
results for the function r/Dwðr;oÞ at a fixed frequency equal to 800 Hz: It should be noted that
the choice of this frequency is arbitrary, but the quality of the comparisons is similar for any
frequency on the frequency band of analysis. Figs. 10(a) and (b) display the graphs of the real and
imaginary parts of the function r/Dwðr;oÞ at frequency 800 Hz: The comparisons between the
experimental results (cross symbols) and the analytical model (solid line) are good. In addition, in
these two figures, the circle symbols correspond to the average of the experimental values over the
points having the same distance r:
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6. Conclusions

The multilayer system containing porous media is relatively difficult to model in the medium
and high frequency domains. The purpose of this paper has been the construction of an analytical
expression of the equivalent acoustic impedance for a multilayer system, constituted of a three-
dimensional porous medium inserted between two thin plates, for the medium and high frequency
ranges. For complex structural acoustic systems, such results can be used to model a
soundproofing scheme by a wall acoustic impedance. The methodology proposed can be used
to other similar multilayer systems. The boundary value problem of the multilayer system
consisting of two-dimensional media (thin plates) coupled with a three-dimensional medium
(porous medium) has been presented. The equations for the general case of a homogeneous
anisotropic viscoelastic porous medium with homogeneous orthotropic viscoelastic plates
have been presented. An analytical model of the equivalent acoustic impedance has been
constructed using a spectral method and its validation has been obtained by comparisons
with experiments. This construction is not self-evident and an adapted algebraic formulation
has to be developed. In the medium and high frequency ranges, the comparisons between
the analytical model and the experiments are good enough either for the local impedance or for
the cross impedance between the driving and the receiving points. The good agreement of these
results gives an experimental validation, firstly, for the mechanical model, i.e., for the boundary
value problem, and, secondly, for the analytical method used for the equivalent acoustic
impedance. In addition, it should be noted that, similarly to the conclusions given in Part 1 of the
paper, the equivalent acoustic impedance tends to be local for frequencies greater than 300 Hz
and, in this case, the modulus of this impedance is a quasi exponential decreasing function with
the distance.
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Appendix A. Expression of the matrices of the matrix equation relative to the porous medium

Substituting constitutive equations (25) and (26) of the porous medium into dynamical
equations (20) yields Eq. (34) in which matrices A11; B11ðkÞ; B12ðkÞ; C11ðkÞ; C12ðkÞ and C22ðkÞ are
defined by

A11 ¼

�BF=2 0 0 0

0 �BF=2 0 0

0 0 �ðAF þ BF Þ �CF

0 0 �CF �EF

2
6664

3
7775; B12ðkÞ ¼

0 0

0 0

ik1CF ik2CF

ik1EF ik2EF

2
6664

3
7775;
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B11ðkÞ ¼

0 0 ik1ðAF þ BF=2Þ ik1CF

0 0 ik2ðAF þ BF=2Þ ik2CF

ik1ðAF þ BF=2Þ ik2ðAF þ BF=2Þ 0 0

ik1CF ik2CF 0 0

2
6664

3
7775;

C11ðkÞ ¼ � o2

*r11 0 0 0

0 *r11 0 0

0 0 *r11 *r12

0 0 *r12 *r22

2
6664

3
7775þ iob

1 0 0 0

0 1 0 0

0 0 1 �1

0 0 �1 1

2
6664

3
7775

þ

ðAF þ BF Þk2
1 þ BF k2

2=2 k1k2ðAF þ BF=2Þ 0 0

k1k2ðAF þ BF=2Þ ðAF þ BF Þk2
2 þ BF k2

1=2 0 0

0 0 ðk2
1 þ k2

2ÞBF=2 0

0 0 0 0

2
6664

3
7775;

C12ðkÞ ¼ �o2 *r12

1 0

0 1

0 0

0 0

2
6664

3
7775þ iob

�1 0

0 �1

0 0

0 0

2
6664

3
7775þ CF

k2
1 k1k2

k1k2 k2
2

0 0

0 0

2
6664

3
7775;

C22ðkÞ ¼ �o2 *r22

1 0

0 1

" #
þ iob

1 0

0 1

" #
þ EF

k2
1 k1k2

k1k2 k2
2

" #
:

Appendix B. Expression of matrix MHðk;oÞ relating vector ðX0ðHÞ;X0ð0ÞÞ with vector ðXðHÞ;Xð0ÞÞ

For x3A�0;H½; the matrix Dðk;x3Þ has four diagonal terms which are exponentionally
increasing and which yields a bad numerical conditioning of the problem. The solution retained
consists of splitting Dðk; x3Þ into two matrices Dþðk;x3Þ corresponding to the eigenvalues
with positive real parts and D�ðk;x3Þ corresponding to the eigenvalues with negative real parts,
such that

Dðk; x3Þ ¼
Dþðk;x3Þ 0

0 D�ðk; x3Þ

" #

with ½Dþðk; x3Þ�jk ¼ djke
x3lþj ðkÞ; ½D�ðk; x3Þ�jk ¼ djke

x3l�j ðkÞ:

Defining Tðx3Þ ¼ FðkÞ�1Wðx3Þ; the first equation (39) in x3 ¼ H can be rewritten as
TðHÞ ¼ Dðk;HÞTð0Þ: Splitting Tðx3Þ ¼ ðTþðx3Þ;T�ðx3ÞÞ yields T�ðHÞ ¼ D�ðk;HÞT�ð0Þ and
Tþð0Þ ¼ ðDþðk;HÞÞ�1TþðHÞ: Introducing the matrix ½D�ðk;HÞ� such that ½D�ðk;HÞ� ¼
½Dþðk;HÞ��1; ones then has ½D�ðk;HÞ�jk ¼ djke

�x3lþj ðkÞ for j and k in 1;y; 4; thus, one obtains
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Tþð0Þ ¼ D�ðk;HÞTþðHÞ: The matrix Fðk;x3Þ can be written as

Fðk;x3Þ ¼
Fþþðk; x3Þ Fþ�ðk; x3Þ

F�þðk; x3Þ F� �ðk;x3Þ

" #
:

Therefore, taking into account the definition of Tðx3Þ; one obtains

X0ðHÞ ¼ Fþþðk;HÞTþðHÞ þ Fþ�ðk;HÞT�ðHÞ;

X0ð0Þ ¼ Fþþðk; 0ÞTþð0Þ þ Fþ�ðk; 0ÞT�ð0Þ;

XðHÞ ¼ F�þðk;HÞTþðHÞ þ F� �ðk;HÞT�ðHÞ;

Xð0Þ ¼ F�þðk; 0ÞTþð0Þ þ F� �ðk; 0ÞT�ð0Þ:

Solving these four matrix equations yields a linear mapping between the vector ðX0ðHÞ;X0ð0ÞÞ and
the vector ðXðHÞ;Xð0ÞÞ such as

X0ðHÞ

X0ð0Þ

" #
¼ MHðk;oÞ

XðHÞ

Xð0Þ

" #
in which MHðk;oÞ ¼

SHHR�1
HH SH0 � SHHR�1

HHRH0

S0HR
�1
HH S00 � S0HR

�1
HHRH0

" #
;

and where

SHHðk; 0;HÞ ¼Fþþðk;HÞ � Fþ�ðk;HÞD�ðk;HÞF� �ðk; 0Þ
�1F�þðk; 0ÞD�ðk;HÞ;

RH0ðk; 0;HÞ ¼ F� �ðk;HÞD�ðk;HÞF� �ðk; 0Þ
�1;

RHHðk; 0;HÞ ¼F�þðk;HÞ � F� �ðk;HÞD�ðk;HÞF� �ðk; 0Þ
�1F�þðk; 0ÞD�ðk;HÞ;

SH0ðk; 0;HÞ ¼ Fþ�ðk;HÞD�ðk;HÞF� �ðk; 0Þ
�1;

S0Hðk; 0;HÞ ¼Fþþðk; 0ÞD�ðk;HÞ � Fþ�ðk; 0ÞF� �ðk; 0Þ
�1F�þðk; 0ÞD�ðk;HÞ;

S00ðk; 0Þ ¼ Fþ�ðk; 0ÞF� �ðk; 0Þ
�1:

It should be noted that RHHðk; 0;HÞ is invertible.
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